

Substituted 4-hydroxyproline di- and tri-peptides as cytotoxic agents

I. H. Hall and S. Y. Chen

Division of Medicinal Chemistry and Natural Products, School of Pharmacy,
University of North Carolina, Chapel Hill, North Carolina, U.S.A.

Accepted May 7, 1998

Summary. 4-Hydroxyproline di- and tri-peptides and N-cbz-hydroxypropyl-glycinamides were observed to be potent cytotoxic agents against the growth of suspended single cells, L-1210, Tmolt₃, and HeLa-S³. The agents were not as potent against the growth of cultured solid tumor cells. Selected derivatives were investigated for their mode of action in Tmolt₃ leukemia cells. The compounds selectively inhibited DNA synthesis at 50 and 100 μ M. The target site of action of the agents appeared to be the purine *de novo* pathway with marked inhibition of the activities of the two regulatory enzymes of the pathway, i.e. PRPP amido-transferase and IMP dehydrogenase. d[NTP] pools were reduced by the agents consistent with their overall reduction of DNA synthesis. Other marginally inhibited targets of the agents were r-RNA polymerase and TMP-kinase activities. The DNA molecule itself did not appear to be a target of these agents.

Keywords: Amino acids – Anti-neoplastic amino acids – Purine and DNA synthesis inhibitors – PRPP amido transferase and IMP dehydrogenase inhibitors

Introduction

Carbobenzoxy[cbz]phenylalanine vinyl esters and 1,2-dibromoethyl esters have previously been shown to be potent anti-neoplastic and anti-inflammatory agents in rodents (Loeffler et al., 1977a). These studies were extended to other amino acids, e.g. leucine, glycine, glutamic acid, aspartic acid and tyrosine which afforded similar activities (Loeffler et al., 1977b). Recently a series of N-cbz-hydroxyprolylglycinamides and related derivatives were synthesized and tested as anti-fibrotic agents, i.e. for the inhibition of prolyl-4-hydroxylase activity, an enzyme required in collagen synthesis (Canne, 1993). These compounds were designed as antimetabolites of hydroxyproline. Due to the similarity in structure to known peptide anti-neoplastic agents, e.g. boron peptides, it was decided to test these new

agents for cytotoxic activity in murine and human cultured cells (Hall et al., 1993).

Materials and methods

Source of compounds

The N-cbz-4-hydroxyprolylglycinamide derivatives (Fig. 1) were synthesized as reported (Canne, 1993). All radioisotopes were purchased from New England Nuclear (Boston, MA) unless otherwise indicated. Radioactivity was determined in Fisher Scintiverse scintillation fluid with correction for quenching. Substrates and cofactors were obtained from Sigma Chemical Co. (St. Louis, MO).

Pharmacological methods

Cytotoxicity


The drugs were placed in solution by homogenization in 0.05% Tween 80/H₂O; the solution was a stable stock at 1 mM concentration of drug. The vehicle, 0.05% Tween 80/H₂O, functioned as the control for all biochemical experiments. Compounds **1–9** (Table 1) were tested for cytotoxic activity. These solutions of drugs and standards were sterilized by passing them through an acrodisc (0.45 µm). The following cell lines were maintained by literature techniques (Geran, et al., 1972): murine L₁₂₁₀ lymphoid leukemia, human Tmolt₃ acute lymphoblastic T cell leukemia, colorectal adenocarcinoma SW480, lung bronchogenic MB-9812, osteosarcoma TE418, KB epidermoid nasopharynx, HeLa-S³ suspended cervical carcinoma, and glioma EH 118 MG. The NCI protocol was used to assess the cytotoxicity of the test compounds and standards in each cell line during exponential log growth. Values for cytotoxicity were expressed as ED₅₀ [µg/ml], i.e. the concentration of the compound inhibiting 50% of cell growth. ED₅₀ values were determined by the trypan blue exclusion technique (Geran et al., 1972) after 3 days (~3 doubling times). A value of less than 4 µg/ml was required for significant activity of growth inhibition according to the NCI protocol. Solid tumor cytotoxicity was determined utilizing crystal violet/MeOH and read at 580 nm (Molecular Devices) after convergence of the control, ~4–6 days (Leibovitz et al., 1976).

Anti-neoplastic activity

All of the compounds were evaluated for their ability to reduce Ehrlich ascites carcinoma growth in CF₁ male mice (28 ± 3 g) (Hall et al., 1978). Mice were implanted with 2 × 10⁶ tumor cells I.P. on day zero and randomly sorted into groups of six. Test drugs were administered at 8 mg/kg/day I.P. on days 1–9. 6-Mercaptopurine (6-MP) at 1 mg/kg/day and 5-fluorouracil (5FU) at 27.5 mg/kg/day were used as standards in the screen. On day 10 the tumor was harvested and the volume and astrocrit determined from which the percent inhibition of tumor growth was determined (Hall et al., 1978).

Incorporation studies

The effects of the agents over a concentration range of 25, 50 and 100 µM on DNA, RNA and protein syntheses was determined by the incorporation of labeled precursors ³H-thymidine, ³H-uridine and ³H-leucine, respectively into 10⁶ Tmolt₃ leukemia cells for 60 min (Laio et al., 1976). The incorporation of ¹⁴C-glycine (53.0 mCi/mmol) into purines was obtained (Cadman et al., 1981). The incorporation of ¹⁴C-formate (53.0 mCi/mmol) into pyrimidines was determined in a similar manner (Christopherson et al., 1981). Tmolt₃ leukemic cells were in the log growth phase with a doubling time of ~26 hours which were used for all of the biochemical experiments.

Fig. 1. Structures of substituted 4-hydroxyproline di & tripeptides

Enzyme assays

Inhibition of various enzyme activities was performed by first preparing the appropriate Tmolt₃ cell homogenates or subcellular fractions, then adding the drug to be tested during the enzyme assay. All of the conditions of the enzyme assays were optimized for Tmolt₃ cells so that the reaction was linear over the 60 min. For the concentration response studies, inhibition of enzyme activity was determined at 25, 50 and 100 μ M of compounds

Table 1. Cytotoxicity of N-Cbz-4-hydroxyprolylglycinamide and related derivatives

Cp'd #	ED ₅₀ values [μg/ml]				Skin				Lung		Osteo bone sarcoma		Glioma			
	Leukemia		T ₄₂₁₀		HeLa-S ₃		Adenocarcinoma		KB		A431		A549		M9812	
			Uterine	Solid	Colon	SW-480	Ileum	HCT-8	Naso- pharynx							
1	1.70	2.04	1.69	5.42	9.40	7.11	5.92	6.47	6.47	6.42	2.92	2.92	8.56	8.56	8.56	
2	3.77	0.89	1.09	7.46	8.28	11.52	10.61	10.18	6.79	7.55	7.87	7.87	8.03	8.03	8.03	
3	2.30	0.78	2.09	8.39	6.09	11.35	10.74	9.27	6.38	8.12	7.67	7.67	8.53	8.53	8.53	
4	2.46	0.90	1.70	8.50	8.37	10.83	11.91	8.52	7.91	8.74	7.58	7.58	9.50	9.50	9.50	
5	3.52	2.52	2.01	9.21	8.58	8.67	11.93	8.61	8.40	8.56	7.03	7.03	8.22	8.22	8.22	
6	3.36	1.07	1.96	9.48	8.47	9.15	13.59	8.28	6.81	8.18	6.69	6.69	7.29	7.29	7.29	
7	3.81	1.97	1.74	8.03	6.84	8.62	6.93	6.92	5.39	8.45	6.88	6.88	6.68	6.68	6.68	
8	4.32	0.52	1.96	8.83	8.36	8.23	10.26	7.06	5.92	8.95	7.27	7.27	7.27	7.27	7.27	
9	2.62	0.93	2.75	8.06	8.74	11.16	7.77	8.82	6.64	8.51	8.48	8.48	8.48	8.48	8.48	
5FU	1.41	2.14	2.47	4.11	3.09	1.12	1.25	0.61	3.58	5.64	3.52	3.52	1.28	1.28	1.28	
Ara C	2.76	2.67	2.13	4.74	3.42	2.54	2.84	0.92	4.69	6.16	0.86	0.86	1.88	1.88	1.88	
Hydroxyurea																
6MP	2.67	3.18	1.96	8.12	4.74	1.77	5.29	3.21	7.37	7.18	2.87	2.87	2.57	2.57	2.57	
	2.42	1.62	2.12	5.61	3.61	1.15	11.04	3.42	4.71	4.29	9.39	9.39	4.46	4.46	4.46	

5FU 5-fluorouracil; Ara-C cytosine arabinoside; 6MP 6-mercaptopurine.

2, **3**, and **8** after 60 min incubations. DNA polymerase α activity was determined in cytoplasmic isolated extracts (Eichler et al., 1977). Nuclear DNA polymerase β was determined by isolating nuclei (Mamaril et al., 1970). The DNA polymerase assay for both α and β was determined with ^3H -thymidine-5'-triphosphate [TTP] (Sawada et al., 1974). Messenger-, ribosomal- and transfer-RNA polymerase enzymes were isolated with different concentrations of ammonium sulfate; and individual RNA polymerase activities were determined using ^3H -uridine-5'-triphosphate [UTP] (Anderson et al., 1975; Hall et al., 1974). Ribonucleoside reductase activity was measured using ^{14}C -cytidine-5'-diphosphate [CDP] with dithioerythritol (Moore and Hurlbert, 1966). The deoxyribonucleotides ^{14}C -deoxyribocytosine-5'-diphosphate [dCDP] were separated from the ribonucleotide [CDP] by TLC on polyethyleneimine cellulose [PEI] plates. Thymidine, thymidine-5'-monophosphate [TMP] and thymidine-5'-diphosphate [TDP] kinase activities were determined using ^3H -thymidine (58.3 mCi/mmol) (Maley and Ochoa, 1958). Carbamyl phosphate synthetase activity was determined (Kalman et al., 1966). The product, citrulline, was quantitated colorimetrically (Archibald, 1944). Aspartate transcarbamylase activity was measured (Kalman et al., 1966). The product, carbamyl aspartate, was quantitated colorimetrically (Koritz and Cohen, 1954). Thymidylate synthetase activity was analyzed by the $^3\text{H}_2\text{O}$ released which was proportional to the amount of TMP formed from ^3H -2'-deoxyribouridine-5'-uridine monophosphate(dUMP) (Kampf et al., 1976). Dihydrofolate reductase activity was determined by a spectrophotometric method (Ho et al., 1971). PRPP-amidotransferase activity was determined by the method of Spassova et al. (1976). Inosine-5'-monophosphate [IMP] dehydrogenase activity was analyzed with $8\text{-}^{14}\text{C}$ -IMP (54 mCi/mmol) (Amersham, Arlington Heights, IL) after separating xanthosine-5'-monophosphate [XMP] on PEI plates (Fisher Scientific) by TLC (Becker and Lohr, 1979). Protein content was determined for the enzymatic assays by the Lowry technique (Lowry et al., 1951).

DNA studies

Tmolt₃ deoxyribonucleoside triphosphates [dNTP] were extracted (Bagnara and Finch, 1971). d[NTP] levels were determined with calf thymus DNA [ct-DNA], *E. coli* DNA polymerase I, non-limiting amounts of the three deoxyribonucleoside triphosphates not being assayed, and either 0.4 mCi of (^3H -methyl)-dTTP or (5- ^3H)-dCTP (Hunting and Henderson, 1982). The effects of compounds **2**, **3**, and **8** on DNA strand scission was determined by the methods of Suzuki et al. (1978), Pera et al. (1981) and Woynarowski et al. (1981). Tmolt₃ leukemia cells were incubated with 10 μCi thymidine methyl- ^3H , 84.0 Ci/mmol for 24 hr at 37°C. Tmolt₃ cells (10^7) were harvested and then centrifuged at 600 g \times 10 min in phosphate saline buffer [PBS]. They were later washed and suspended in 1 ml of PBS. Lysis buffer (0.5 ml; 0.5 M NaOH, 0.02 M EDTA, 0.01% Triton X-100 and 2.5% sucrose) was layered onto a 5–20% alkaline-sucrose gradient (5 ml; 0.3 M NaOH, 0.7 KCl and 0.01 M EDTA); this was followed by 0.2 ml of the cell preparation. After the gradient was incubated for 2.5 hr at room temperature, it was centrifuged at 12,000 RPM at 20°C for 60 min (Beckman rotor SW60). Fractions (0.2 ml) were collected from the bottom of the gradient, neutralized with 0.2 ml of 0.3 N HCl, and measured for radioactivity. Thermal calf thymus DNA denaturation studies, DNA u.v. absorption studies and DNA viscosity studies were conducted after incubation of compounds **2**, **3**, and **8** at 100 μM at 37°C for 24 hr (Zhao et al., 1987).

Statistical analysis

Data is displayed in Table 2 as the means \pm standard deviations of the mean. N is the number of samples or animals per group. The Student's "t"-test was used to determine the probable level of significance (p) between test samples and control samples.

Table 2. Effects of compounds **2**, **3**, and **8** on Tmolt₃ leukemia cell metabolism over 60 min
Percent of control (X + SD) (N = 6)

Assay	Control	Compound 2			Compound 3			Compound 8		
		25 μ M	50 μ M	100 μ M	25 μ M	50 μ M	100 μ M	25 μ M	50 μ M	100 μ M
DNA synthesis	100 ± 6a	74 ± 5*	71 ± 5*	48 ± 4*	65 ± 4*	59 ± 5*	49 ± 4*	150 ± 6*	43 ± 4*	44 ± 4*
RNA synthesis	100 ± 5b	89 ± 5	50 ± 4*	25 ± 3*	124 ± 6	135 ± 6*	158 ± 6*	126 ± 5*	136 ± 6*	151 ± 7*
Protein synthesis	100 ± 7c	88 ± 6	114 ± 7	130 ± 6*	158 ± 7*	175 ± 6*	210 ± 7*	180 ± 6*	81 ± 6	77 ± 5*
DNA polymerase alpha	100 ± 6d	106 ± 5	75 ± 3*	70 ± 4*	105 ± 6	95 ± 6	90 ± 5	99 ± 5	86 ± 6	81 ± 5*
mRNA polymerase	100 ± 6e	97 ± 5	84 ± 4	82 ± 6	120 ± 7	106 ± 5	91 ± 6	87 ± 5	82 ± 4*	78 ± 4*
rRNA polymerase	100 ± 6f	58 ± 4*	53 ± 3*	50 ± 3*	66 ± 5*	54 ± 4*	54 ± 3*	65 ± 5*	64 ± 4*	62 ± 4*
tRNA polymerase	100 ± 5g	103 ± 6	97 ± 6	90 ± 6	100 ± 7	95 ± 5	94 ± 5	104 ± 6	98 ± 5	96 ± 6
Ribonucleoside reductase	100 ± 8h	105 ± 6	82 ± 3	86 ± 5	92 ± 5	84 ± 6	84 ± 5	95 ± 6	96 ± 5	94 ± 5
Dihydrofolate reductase	100 ± 7i	130 ± 5*	106 ± 5	105 ± 5	121 ± 6	106 ± 5	98 ± 6	110 ± 6	105 ± 4	80 ± 4*
Purine de novo synthesis	100 ± 8j	44 ± 4*	40 ± 3*	38 ± 2*	52 ± 4*	38 ± 3*	36 ± 3*	26 ± 3*	21 ± 2*	21 ± 3*
PRPP amino transferase	100 ± 6k	26 ± 3*	24 ± 2*	21 ± 2*	98 ± 5	94 ± 4	42 ± 4*	95 ± 5	68 ± 5*	48 ± 4*
IMP dehydrogenase	100 ± 7l	106 ± 5	85 ± 4	79 ± 5*	82 ± 5	65 ± 4*	47 ± 4*	86 ± 5	54 ± 5*	48 ± 3*
Pyrimidine de novo synthesis	100 ± 6m	99 ± 7	98 ± 6	96 ± 6	104 ± 6	103 ± 5	93 ± 5	98 ± 7	96 ± 5	97 ± 5
Carbamyl phosphate synthetase	100 ± 7n	94 ± 4	92 ± 5	91 ± 5	108 ± 7	100 ± 6	81 ± 7	85 ± 5	81 ± 4*	78 ± 4*
Aspartate transcarbamylase	100 ± 8o	99 ± 6	95 ± 5	86 ± 5	97 ± 6	95 ± 5	93 ± 4	99 ± 6	92 ± 4	91 ± 7
Thymidylate synthetase	100 ± 5p	120 ± 6	125 ± 5	143 ± 6*	109 ± 7	134 ± 6	147 ± 7*	102 ± 6	108 ± 6	120 ± 6
Thymidine kinase	100 ± 6q	96 ± 5	88 ± 4	91 ± 5	99 ± 7	102 ± 6	104 ± 6	107 ± 5	92 ± 6	81 ± 5
Thymidine monophosphate kinase	100 ± 5r	105 ± 5	78 ± 3	77 ± 3*	103 ± 7	88 ± 5	90 ± 6	103 ± 6	90 ± 5	79 ± 4*
Thymidine diphosphate kinase	100 ± 5s	92 ± 3	89 ± 5	81 ± 5*	84 ± 6	101 ± 6	101 ± 6	83 ± 6	85 ± 5	104 ± 8
d(ATP)	100 ± 6t	—	—	67 ± 4*	—	—	79 ± 5*	—	—	63 ± 5*
d(GTP)	100 ± 5u	—	—	49 ± 4*	—	—	54 ± 4*	—	—	54 ± 3*
d(CTP)	100 ± 6v	—	—	64 ± 3*	—	—	59 ± 2*	—	—	61 ± 3*
d(UTP)	100 ± 6w	—	—	133 ± 6*	—	—	121 ± 5	—	—	182 ± 7*
Control values for 10 ⁶ cells/hr					m 19,758 dpm	n 0.807 mol N-carbamyl aspartate	s 1,891 dpm			
a 7,719 dpm	g 400 dpm				n 0.807 mol N-carbamyl aspartate	o 0.273 mmol citrulline	t 17,07 dpm			
b 1,014 dpm	h 48,780 dpm				o 0.273 mmol citrulline	u 13.58 pmoles				
c 17,492 dpm	i 0.144 D.O.D. units				u 13.58 pmoles	v 33.60 pmoles				
d 9,019 dpm	j 28,624 dpm				v 33.60 pmoles	w 31.04 pmoles				
e 1,343 dpm	k 0.0878 O.D. units				w 31.04 pmoles					
f 325 dpm	l 19,575 dpm, units									
	m 1,371 dpm									
	r 1,179 dpm									

* P ≤ 0.001 Student's "t" test.

Results

In the *in vivo* Ehrlich ascites tumor model in CF₁ mice, compound **1** at 8 mg/kg/day afforded 100% inhibition of growth, compounds **3** and **5** afforded 97.5% inhibition, and compound **6** afforded 96% inhibition. 6MP at 1 mg/kg/day resulted in 99.9% inhibition of growth of Ehrlich ascites carcinoma. 5FU at 27.5 mg/kg resulted in 90% suppression of tumor growth. Compounds **2**, **4**, **7** and **9** caused 74%, 72%, 77.6% and 71% inhibition, respectively. Compound **8** was toxic at 8 mg/kg/day and resulted in the death of all of the animals (N = 6).

The N-cbz-4-hydroxyprolylglycinamides and related derivatives demonstrated good cytotoxic activity against the growth of murine and human cultured tumor cells. Significant activity was denoted as agents with ED₅₀ values of less than 4 μ g/ml according to the NCI protocol. Compounds **1–7** and **9** demonstrated potent cytotoxicity against the growth of L1210 lymphoid leukemia demonstrating activities in the range of the clinical standard agents. All nine compounds were active against Tmolt₃ growth. Selected compounds, **2**, **3**, **4**, **8**, and **9** afforded ED₅₀ values < 1 μ g/ml, i.e. these agents were more potent than the clinical standards used in the assay. All of the compounds were active against HeLa-S³ suspended uterine cell growth with ED₅₀ values < 3 μ g/ml. The compounds were generally not active in the human colon SW480 or ileum adenocarcinoma HCT-8, KB nasopharynx, skin epidermoid A431, solid HeLa uterine, glioma or rat UMR-106 osteosarcoma screen. Compound **1** did result in an ED₅₀ value of 2.93 μ g/ml in the rat UMR-106 osteosarcoma screen and 5.42 μ g/ml in the human solid HeLa uterine screen. Compounds **8** and **9** caused ED₅₀ values of 5.39 and 5.92 μ g/ml in the human lung A549 screen. As can be noted the N-cbz-4-hydroxyprolylglycinamides and related derivatives in the solid tumor screens were not as active as in the suspended cell lines, but many of the standards also demonstrated this same pattern of activity, i.e. afforded ED₅₀ > 4 μ g/ml.

In the Tmolt₃ leukemia cultured cell line compounds **2**, **3** and **8** suppressed DNA synthesis in a concentration dependent manner so that at 100 μ M at least 50% reduction of synthesis occurred (Table 2). Compound **2** reduced RNA synthesis 75% at 100 μ M; yet **3** and **8** actually stimulated RNA synthesis ~50% at this concentration. Compound **8** at 25 μ M caused an elevated level of protein synthesis and then caused a 23% reduction of protein synthesis at 100 μ M for 60 min. Compounds **3** at 50 and 100 μ M and **8** at all concentrations stimulated protein synthesis. DNA polymerase α activity was reduced 30% by compound **2** and 19% by compound **8**. m-RNA polymerase activity was suppressed marginally, 18% by compound **2** and 22% by compound **8**. r-RNA polymerase activity was reduced 50% by compound **2**, 46% by compound **3** and 38% by compound **8**. t-RNA polymerase activity was not significantly affected by the agents. Ribonucleoside reductase activity was only marginally reduced 6–16% by the agents at 100 μ M. Dihydrofolate reductase activity was stimulated at lower concentrations of the agents; yet, only compound **8** caused a 20% reduction of activity at 100 μ M after 60 min incubation.

Purine *de novo* synthesis was significantly inhibited by compounds **2**, **3** and **8** after 60 min. Both PRPP amido-transferase and IMP dehydrogenase activities were markedly reduced by all three compounds. *De novo* pyrimidine synthesis was not suppressed by the agents over 60 min and neither were the individual enzyme activities of the pathway, i.e. carbamyl phosphate synthetase, aspartate transcarbamylase and thymidylate synthetase. Thymidine kinase activity was reduced 19% by compound **8**. TMP kinase activity was suppressed 23% by compound **2** and 21% by compound **8** at 100 μ M and TDP kinase activity was reduced 16–19% at 100 μ M of the agents after 60 min. All three agents reduced d[ATP], d[GTP] and d[CTP] pool levels and d[TPP] pool levels were actually elevated by all three agents at 100 μ M.

Studies with ct-DNA indicated that the agents did not act directly on the nucleoside bases of DNA based on negative finding after 24 hr. incubation at 100 μ M, i.e. no changes in DNA viscosity, thermal denaturation or uv absorption from 220 to 340 nm. Tmolt₃ DNA strand scission studies demonstrated no significant DNA fragmentation after 24 hr. incubation of agents at 100 μ M (data not shown).

Discussion

Several of the 4-hydroxyprolylglycinamide, N-cbz-4-substituted-prolylglycinamides and N-cbz-prolyl-4-substituted-prolylglycinamides at 8 mg/kg/day were active *in vivo* and were comparable to the effects of 6MP at 1 mg/kg/day and 5FU at 25 mg/kg/day in their ability to suppress Ehrlich ascites carcinoma tumor growth, >90% inhibition of tumor growth. Compound **1** with no cbz moiety was the most active in the *in vivo* screen. These data would suggest that *in vivo* efficacy of the agents as antineoplastic agents was evident and further investigation in *in vivo* tumor model is warranted in the future.

The compounds demonstrated potent inhibition of tumor cell growth in culture. There was no clear structure activity relationships for cytotoxic action. The unsubstituted 4-hydroxy derivative did demonstrate improved L1210 growth inhibition whereas in the Tmolt₃ screen the N-cbz-4-hydroxyprolylglycinamides, compounds **2**, **3**, **4**, demonstrated better activity. The substitution of the 2-carboxyethoxy, compounds **3** and **8** or the 4-carboxybutoxy, **4** and **9** at the 4-OH position of N-cbz-prolyl-4 or 4-substituted prolyl-glycine amides afforded improved cytotoxicity in Tmolt₃ cells whereas the 2-carboxy-pyridylmethoxy substitutions, compounds **5** and **6** did not improve the activity. In the HeLa-S³ screen the N-cbz-4-OH substituted prolylglycinamide, compound **2** afforded the best activity than any other substitution at the 4-position which led to less cytotoxic activity. Compound **1** with no cbz moiety was one of the more active compounds in the cytotoxic screens and positively correlated with the *in vivo* antineoplastic activity.

The major metabolic effect of the N-cbz-4-substituted prolylglycinamides in Tmolt₃ leukemia cells was the inhibition of DNA synthesis within 60 min. The inhibition of the activity of regulatory enzymes in the purine pathway correlated positively with the suppression of the purine biosynthesis and

DNA synthesis inhibition. The reduction in activities of both regulatory enzymes of this pathway, i.e. PRPP-amido transferase and IMP dehydrogenase, was probably additive and is very similar to the observed effects of 6-mercaptopurine. Some moderate reductions of nucleoside kinase, ribonucleoside reductase, DNA polymerase α and r-RNA polymerase activities afforded by the agents after 60 min probably was additive with the overall suppression of DNA synthesis but certainly these enzyme sites were not the major targets of the agents. These values were significantly different from the control values, but the reduction was not of a magnitude to account for the reduction in DNA synthesis. The DNA molecule itself did not appear to be the target of the agents since no intercalation, binding to nucleoside bases, cross linking or DNA fragmentation was evident after 60 min incubation. Thus, it can be concluded that the N-cbz-4-substituted prolylglycinamides are antimetabolite antineoplastic agents. The d[NTP] pool levels of Tmolt₃ leukemia cells were altered by drug treatment for 60 min. Reduction by the derivatives of *de novo* purine synthesis would ultimately lower d[ATP] and d[GTP] pools in the cell. It is remarkable that this reduction was evident after only 60 min. The fact that d[TTP] pools were not reduced is consistent with the fact that the agents did not suppress *de novo* pyrimidine synthesis, including the activities of the early regulatory enzymes of the pathway, i.e. carbamyl phosphate synthetase and aspartate transcarbamylase activities. Actually thymidylate synthetase activity was slightly elevated and probably accounts for the elevated dTTP levels observed at the expense of dCTP pool levels. Nucleotide levels may also be lowered due to the agents slightly reducing ribonucleoside reductase and nucleoside kinase activities although the effects were marginal. These d[NTP] pool levels are the net effects of the agents on their *de novo* synthesis, incorporation of bases into a new strand of DNA and the nucleotide retrieval pathways. The fact that DNA polymerase α activity was slightly suppressed would cause slightly elevated levels of d[NTP] pools whereas inhibition of the purine pathway would ultimately lead to reduction of d[NTP] synthesis. Reductions of d[NTP] pools are usually observed early because of their low level in mammalian cells compared to r[NTP] pools.

The boron containing di- and tri-peptides of glycine, alanine, betaine, phenylalanine, and tyrosine (Hall et al., 1993), as well as the carbobenzoxy(cbz)phenylalanine vinyl esters and 1,2-dibromoethyl esters demonstrated similar cytotoxicity/antineoplastic (Loeffler et al., 1977) activities as did the di- and tripeptide 4-substituted hydroxyproline derivatives. The latter compounds appeared more potent in the *in vivo* screen with more similar activity to the clinical antimetabolites, 6-MP and 5-FU. Mode of action studies have not been completed on many of the antimetabolite peptides excluding those which are alkylating agents. N-acetyl-p-boron-phenyl-alanyl-phenylamine-methyl ester inhibited L-1210 DNA, RNA and protein syntheses (Hall et al., 1993). It was a potent inhibitor of L-1210 IMP dehydrogenase and ribonucleoside reductase activities but not PRPP-amido transferase activity. The N-benzyloxycarbonyl-L-phenylalanine esters inhibited Ehrlich ascites carcinoma DNA and protein syntheses after *in vivo* treatment for 3

days at 8 mg/kg/day (Hall et al., 1978). Thymidylate synthetase and nucleoside kinase activities were reduced by these derivatives. Thus, it appears that substituted di- and tri-peptides can act as antimetabolites and the di- and tripeptide 4-substituted hydroxyproline derivatives may be exclusively directed towards inhibition of purine *de novo* synthesis.

Acknowledgments

We wish to thank Drs. Lynne E. Canne and Jane Millen for the gift of the compounds used in this study.

References

Anderson KM, Mendelson IS, Guzik G (1975) Solubilized DNA-dependent nuclear RNA polymerases from the mammary glands of late-pregnant rats. *Biochem Biophys Acta* 383: 56-66

Archibald RM (1944) Determination of citrulline and allantoic acid and demonstration of citrulline in blood plasma. *J Biol Chem* 156: 121-142

Bagnara AS, Finch LR (1971) Quantitative extraction and estimation of intracellular nucleotide-triphosphate in *Escherichia coli*. *Anal Biochem* 45: 24-34

Becker JH, Lohr GW (1979) Inosine-5'-phosphate dehydrogenase activity in normal and leukemic blood cells. *Klin Wochenschr* 57: 1109-1115

Cadman E, Heimer R, Benz C (1981) The influence of methotrexate pretreatment on 5-fluorouracil metabolism in L₁₂₁₀ cells. *J Biol Chem* 256: 1695-1704

Canne LE (1993) Synthesis of modified 4-hydroxyproline peptides as multisubstrate analogue inhibitors of proly 4-hydroxylase. Ph.D. Thesis, University North Carolina, pp 1-113

Christopherson RI, Yu ML, Jones ME (1981) An overall radioassay for the first three reactions of *de novo* pyrimidine synthesis. *Anal Biochem* 11: 240-249

Geran RJ, Greenberg NM, Macdonald MM, Schumacher AM, Abbott BJ (1972) Protocols for screening chemical agents and natural products against animal tumors and other biological systems. *Cancer Chemother Reports* 3: 9-24

Eichler DC, Fisher PA, Korn D (1977) Effect of calcium on the recovery distribution of DNA polymerase from cultured human cells. *J Biol Chem* 252: 4011-4014

Hall IH, Sajadi Z, Loeffler LJ (1978) Antineoplastic agents III. Effects of dibromoethyl and vinyl esters of N-benzoxycarbonyl-L-phenylalanine on Ehrlich ascites tumor cell metabolism. *J Pharm Sci* 67: 1726-1731

Hall IH, Carlson GL, Abernathy GS, Piantadosi C (1974) Cycloalkanones IV. Antifertility agents. *J Med Chem* 17: 1253-1257

Hall IH, Hall ES, Miller MC III, Sood A, Spielvogel BF (1993) The effects of boron containing peptides on L1210 lymphoid leukemia metabolism. *Amino Acids* 4: 287-302

Ho YK, Hakala T, Zakrzewski SF (1971) 5-(1-Adamantyl) pyrimidines as inhibitors of folate metabolism. *Cancer Res* 32: 1023-1028

Hunting D, Henderson JF (1982) Determination of deoxyribonucleoside triphosphates using DNA polymerase: a critical evaluation. *Can J Biochem* 59: 723-727

Kalman SM, Duffield PH, Brzozowski TJ (1966) Purification and properties of a bacterial carbamyl phosphate synthetase. *J Biol Chem* 241: 1871-1877

Kampf A, Barfknecht RL, Schaffer PJ, Osaki S, Mertes MP (1976) Synthetic inhibitors of *Escherichia coli* calf thymus and Ehrlich ascites tumor thymidylate synthetase. *J Med Chem* 19: 903-908

Koritz SB, Gohen PP (1954) Colorimetric determination of carbamyl amino acid and related compounds. *J Biol Chem* 209: 145-150

Leibovitz AL, Stinson JC, McComb WB III, McCoy CE, Mazur KC, Mabry ND (1976) Classification of human colorectal adenocarcinoma cell lines. *Cancer Res* 36: 4562–4569

Liao LL, Kupchan SM, Horwitz SB (1976) Mode of action of the antitumor compound bruceatin, an inhibitor of protein synthesis. *Mol Pharmacol* 12: 167–176

Loeffler LJ, Sajadi Z, Hall IH (1977a) Antineoplastic agents. 1. N-protected vinyl 1,2-dihaloethyl and cyanomethyl esters of phenylalanine. *J Med Chem* 20: 1578–1584

Loeffler LJ, Sajadi Z, Hall IH (1977b) Antineoplastic agents. 2. Structure activity studies of N-protected vinyl, 1,2-dibromethyl, and cyanomethyl esters of several amino acids. *J Med Chem* 20: 1584–1588

Lowry OH, Rosebrough J, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. *J Biol Chem* 193: 265–275

Maley F, Ochoa S (1958) Enzymatic phosphorylation of deoxycytidyl acid. *J Biol Chem* 233: 1538–1543

Mamaril FP, Dobrjasky A, Green (1970) A rapid method for isolated of nuclei of Ehrlich ascites tumor cells. *Cancer Res* 30: 352–356

Moore EC, Hurlbert RB (1966) Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotide or activators and inhibitors. *J Biol Chem* 241: 4802–4809

Pera JF, Rawlings CJ, Shackleton J, Roberts JJ (1981) Quantitative aspects of the formation and loss of DNA interstrand crosslinks in Chinese hamster cells following treatment with cis-diamminodichloro-platinum(II) (cisplatin). Comparison and results from alkaline elution, DNA renaturation and DNA sedimentation studies. *Biochem Biophys Acta* 655: 152–166

Sawada H, Tatsumi K, Sadada M, Shirakawa S, Nakamura T, Wakisaka G (1974) Effects of neocarzinostatin on DNA synthesis in L_{1210} cells. *Cancer Res* 34: 3341–3346

Spassova MK, Russev GC, Goovinsky EV (1976) Some pyrazoles as inhibitors of purine biosynthesis *de novo*. *Biochem Pharmacol* 25: 923–924

Suzuki H, Nishimura T, Muto SK, Tanaka N (1978) Mechanism of action of macro-momycin: DNA strand scission, inhibition of DNA synthesis mitosis. *J Antibacteriol* 32: 875–883

Woynarowski JW, Beerman TA, Konopa J (1981) Introduction of deoxyribonucleic acid damage in HeLa S³ cells by cytotoxic and antitumor sesquiterpine lactones. *Biochem Pharmacol* 30: 3005–3007

Zhao Y, Hall IH, Oswald CB, Yokoi T, Lee KH (1987) Anti-malarial agents III. Mechanism of action of artesunate against *Plasmodium berghi* infection. *Chem Pharm Bull* 35: 2052–2061

Authors' address: Dr. Iris H. Hall, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, U.S.A.

Received March 13, 1997